Jun 23, 2012 The AES key is much simpler; it’s just random data so we call RANDbytes to get the number of random bytes needed for the AES encrypted key and IV. There is also the option to use the EVPBytesToKey function which is a PBKDF. This function, as I called it, will generate a 256 bit key in CBC mode, with a salt and passphrase that are random. C# (CSharp) System.Security.Cryptography AesCryptoServiceProvider.GenerateKey - 30 examples found. These are the top rated real world C# (CSharp) examples of System.Security.Cryptography.AesCryptoServiceProvider.GenerateKey extracted from open source projects.
Jan 16, 2009 I came across the Ultra High Security Password Generator the other day, which uses a very high quality pseudo-random number generator to generate passwords and keys. The idea is not to use the full 63 characters as a password, but rather a contiguous subset, such as the first 8 characters. Encryption Key Generator. The all-in-one ultimate online toolbox that generates all kind of keys! Every coder needs All Keys Generator in its favorites! It is provided for free and only supported by ads. Mar 12, 2020 Generating AES keys and password Use the OpenSSL command-line tool, which is included with InfoSphere® MDM, to generate AES 128-, 192-, or 256-bit keys. The madpwd3 utility is used to create the password.
hProv
Handle of a cryptographic service provider (CSP) created by a call toCryptAcquireContext.
dwLen
Number of bytes of random data to be generated.
pbBuffer
Buffer to receive the returned data. This buffer must be at least dwLen bytes in length.
Note: although providing a key name is optional, it is a best practice for ease of managing multiple SSH keys. Git generate ssh key and save it free.
Optionally, the application can fill this buffer with data to use as an auxiliary random seed.
If the function succeeds, the return value is nonzero (TRUE).
If the function fails, the return value is zero (FALSE). For extended error information, callGetLastError.
The error codes prefaced by 'NTE' are generated by the particular CSP being used. Some possible error codes are listed in the following table.
Return code | Description |
---|---|
| One of the parameters specifies a handle that is not valid. |
| One of the parameters contains a value that is not valid. This is most often a pointer that is not valid. |
| The hProv parameter does not contain a valid context handle. |
| The function failed in some unexpected way. |
The data produced by this function is cryptographically random. It is far more random than the data generated by the typical random number generator such as the one shipped with your C compiler.
This function is often used to generate random initialization vectors and salt values.
Software random number generators work in fundamentally the same way. They start with a random number, known as the seed, and then use an algorithm to generate a pseudo-random sequence of bits based on it. The most difficult part of this process is to get a seed that is truly random. This is usually based on user input latency, or the jitter from one or more hardware components.
With Microsoft CSPs, CryptGenRandom uses the same random number generator used by other security components. This allows numerous processes to contribute to a system-wide seed. CryptoAPI stores an intermediate random seed with every user. To form the seed for the random number generator, a calling application supplies bits it might have—for instance, mouse or keyboard timing input—that are then combined with both the stored seed and various system data and user data such as the process ID and thread ID, the system clock, the system time, the system counter, memory status, free disk clusters, the hashed user environment block. This result is used to seed the pseudorandom number generator (PRNG). In Windows Vista with Service Pack 1 (SP1) and later, an implementation of the AES counter-mode based PRNG specified in NIST Special Publication 800-90 is used. In Windows Vista, Windows Storage Server 2003, and Windows XP, the PRNG specified in Federal Information Processing Standard (FIPS) 186-2 is used. If an application has access to a good random source, it can fill the pbBuffer buffer with some random data before calling CryptGenRandom. The CSP then uses this data to further randomize its internal seed. It is acceptable to omit the step of initializing the pbBuffer buffer before calling CryptGenRandom.
The following example shows the generation of 8 random bytes. These can be used to create cryptographic keys or for any application that uses random numbers. For an example that includes the complete context for this example, see Example C Program: Duplicating a Session Key.
Minimum supported client | Windows XP [desktop apps only] |
Minimum supported server | Windows Server 2003 [desktop apps only] |
Target Platform | Windows |
Header | wincrypt.h |
Library | Advapi32.lib |
DLL | Advapi32.dll |
Chilkat • HOME • Android™ • Classic ASP • C • C++ • C# • Mono C# • .NET Core C# • C# UWP/WinRT • DataFlex • Delphi ActiveX • Delphi DLL • Visual FoxPro • Java • Lianja • MFC • Objective-C • Perl • PHP ActiveX • PHP Extension • PowerBuilder • PowerShell • PureBasic • CkPython • Chilkat2-Python • Ruby • SQL Server • Swift 2 • Swift 3/4 • Tcl • Unicode C • Unicode C++ • Visual Basic 6.0 • VB.NET • VB.NET UWP/WinRT • VBScript • Xojo Plugin • Node.js • Excel • Go
| Demonstrates how to use RSA to protect a key for AES encryption. It can be used in this scenario: You will provide your RSA public key to any number of counterparts. Your counterpart will generate an AES key, encrypt data (or a file) using it, then encrypt the AES key using your RSA public key. Your counterpart sends you both the encrypted data and the encrypted key. Since you are the only one with access to the RSA private key, only you can decrypt the AES key. You decrypt the key, then decrypt the data using the AES key. This example will show the entire process. (1) Generate an RSA key and save both private and public parts to PEM files. (2) Encrypt a file using a randomly generated AES encryption key. (3) RSA encrypt the AES key. (4) RSA decrypt the AES key. (5) Use it to AES decrypt the file or data.
|
© 2000-2020 Chilkat Software, Inc. All Rights Reserved.